Factorization in additive monoids of evaluation polynomial semirings
نویسندگان
چکیده
For a positive real α, we can consider the additive submonoid M of line that is generated by nonnegative powers α. When α transcendental, unique factorization monoid. However, when algebraic, may not be atomic, and even it contain elements having more than one (i.e., decomposition as sum irreducibles). The main purpose this paper to study phenomenon multiple factorizations inside M. algebraic but rational, arithmetic in highly interesting complex. In order arrive conclusion, investigate various invariants M, including sets lengths, Betti elements, catenary degrees. Our investigation gives continuity recent studies carried out Chapman et al. 2020 Correa-Morris Gotti 2022.
منابع مشابه
Factorization in Topological Monoids
We sketch a theory of divisibility and factorization in topological monoids, where finite products are replaced by convergent products. The algebraic case can then be viewed as the special case of discretely topologized topological monoids. We define the topological factorization monoid, a generalization of the factorization monoid for algebraic monoids, and show that it is always topologically...
متن کاملRationally Additive Semirings
We define rationally additive semirings that are a generalization of (ω)complete and (ω-)continuous semirings. We prove that every rationally additive semiring is an iteration semiring. Moreover, we characterize the semirings of rational power series with coefficients in N∞, the semiring of natural numbers equipped with a top element, as the free rationally additive semirings.
متن کاملFactorization Properties of Congruence Monoids
Let n ∈ N, Γ ⊆ N and define Γn = {x ∈ Zn | x ∈ Γ} the set of residues of elements of Γ modulo n. If Γn is multiplicatively closed we may define the following submonoid of the naturals: HΓn = {x ∈ N | x = γ, γ ∈ Γn}∪{1} known as a congruence monoid (CM). Unlike the naturals, many CMs enjoy the property of non-unique factorization into irreducibles. This opens the door to the study of arithmetic ...
متن کاملevaluation of sadr eminence in safavid period
چکیده: یکی از دوره های مهم تاریخی ایران به لحاظ تأمین استقلال ملی مذهبی و حتی تأثیر آن بر فرهنگ و مذهب ایرانیان، دوره صفویه است. رسمیت دادن و رواج مذهب شیعه توسط شاه اسماعیل اول، یکی از مهمترین اقدامات این دولت محسوب می شود. بنابراین برای اجرای این سیاست، وی منصب صدارت را به عنوان منصبی مذهبی- حکو متی ایجاد کرد .این منصب از دوره ی تیموریان ایجاد شده بود ولی در اواخر این دوره اهمیت بیشتری یافت...
15 صفحه اولUnique Factorization Monoids and Domains
It is the purpose of this paper to construct unique factorization (uf) monoids and domains. The principal results are: (1) The free product of a well-ordered set of monoids is a uf-monoid iff every monoid in the set is a uf-monoid. (2) If M is an ordered monoid and F is a field, the ring ^[[iW"]] of all formal power series with well-ordered support is a uf-domain iff M is naturally ordered (i.e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2023
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2023.2208672